

for Temporary Movement Joints

We are one team. We are Leviat.

Leviat is the new name of CRH's construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat's comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH's construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com

Our product brands include:

HELIFIX

GISEDIO PLAKA

locations

sales in countries

3000 people worldwide

Contents

Advantages and Applications	4-5
Range of Lockable Dowels	6-7
Performance Data	8
Edge Distance and Spacings	9
Reinforcement Details	10
Dimensions	11
Installation	12
Projects	13
Other Ancon Products	13

Lockable Dowels

Lockable Dowels have been designed by Leviat for use at temporary movement joints, most commonly found in post-tensioned concrete frames.

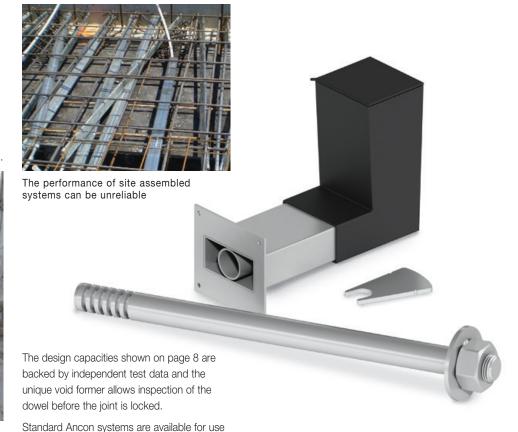
These dowels allow initial shrinkage of the concrete to take place and are then locked in position with a mechanical plate and a controlled amount of epoxy resin. The locked dowels continue to transfer shear, but prevent further movement taking place.

Advantages

The use of Lockable Dowels can save a significant amount of time and materials over other construction methods.

Concrete shrinkage has traditionally been accommodated by leaving gaps in the slab called 'pour strips' or 'closure strips'. These strips are filled once movement has stabilised, however until they are filled the slabs must be propped, restricting site access and delaying site progress. Gaps in the slab also create a trip hazard for site workers, use additional formwork and can leave the soffit face marked.

Pour Strips restrict site access, cause a trip hazard and delay progress on site


Lockable Dowels improve site access, minimise formwork requirements and accelerate the rate of construction. With a Lockable Dowel, there is less requirement for the slabs to be propped or a support corbel to be constructed, as shear load is transferred by the dowel. The time saved by early removal of slab props can be significant.

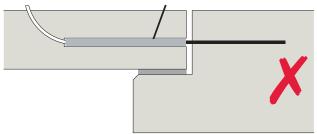
A Lockable Dowel also provides many advantages over the site-assembled arrangement of carbon steel reinforcing bar, galvanised or plastic ducting, vent tubes and a non-specific grout, which is sometimes used by contractors.

at slab joints and retaining / core walls.

In addition, engineers have found the Ancon Lockable Dowel to be the preferred design solution for pin-ended joints. Although it is customary for practical reasons to use U-bars or other rebar continuity systems at these connections, these options do not truly act as hinges and so rotation of the slab under load can induce cracking at the wall-to-slab interface with potential integrity issues.

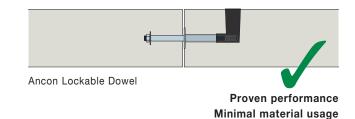
The Lockable Dowel is closer to a true pinended joint and, being manufactured from stainless steel, provides additional corrosion protection over systems using carbon steel reinforcement.

Applications

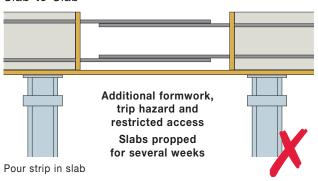

In most cases, Ancon Lockable Dowels can be used to replace pour strips at temporary movement joints in post-tensioned concrete frames. Standard Ancon systems are available for use at slab joints and retaining / core walls.

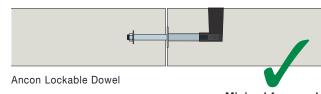
The consulting design engineer wanted a one metre wide pour strip to be left open for 90 days which wasn't acceptable to Hansen Yuncken. Using the Ancon Lockable Dowel system allowed earlier formwork stripping and work to continue with our services, thereby reducing overall construction time.

Brent Courtney, Senior Site Manager, Hansen Yuncken

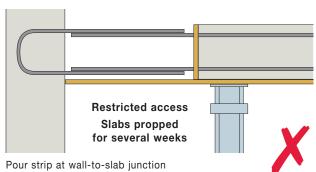


Slab-to-Slab




Various site-assembled components

Unreliable performance, additional construction materials used and support corbel or prop required


Slab-to-Slab

Minimal formwork Improved site access Reduced propping time

Slab-to-Wall

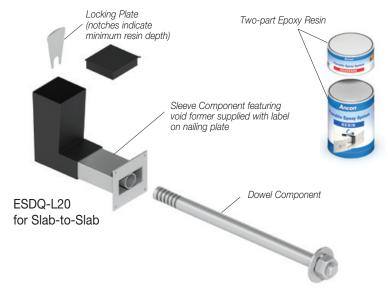
Range of Lockable Dowels

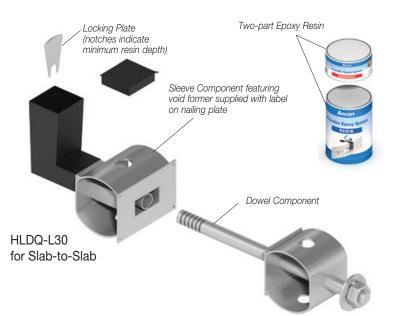
A Lockable Dowel allows initial shrinkage of the concrete to take place and then, after a pre-determined time period (generally 90-120 days), is locked in position with a mechanical plate and a controlled amount of epoxy resin. The range comprises three products; ESDQ-L20, HLDQ-L30 and ESDQ-L20W.

Slab-to-Slab Lockable Dowels ESDQ-L20*

The dowel component is manufactured from 30mm diameter stainless steel; one end is threaded with a fixed nut and washer, and the other features a series of grooves to accept the Locking Plate. The cylindrical sleeve which accepts the dowel component is contained within a box-section to allow lateral, longitudinal and some rotational movement. The epoxy resin is poured into the L-shaped void former. This product has a design capacity of almost 70kN in shear and up to 100kN in tension. See pages 8-11 for full technical details.

Reinforcement around ESDQ-L20 Sleeves


HLDQ-L30*


The HLDQ-L30 is a high load Lockable Dowel with a design capacity of up to 136kN in shear and up to 100kN in tension. See pages 8-11 for full technical details.

HLDQ-L30 Sleeve nailed to formwork

Example Specification Clause

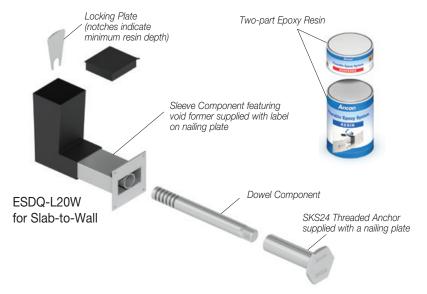
Delete/Amend blue text as appropriate

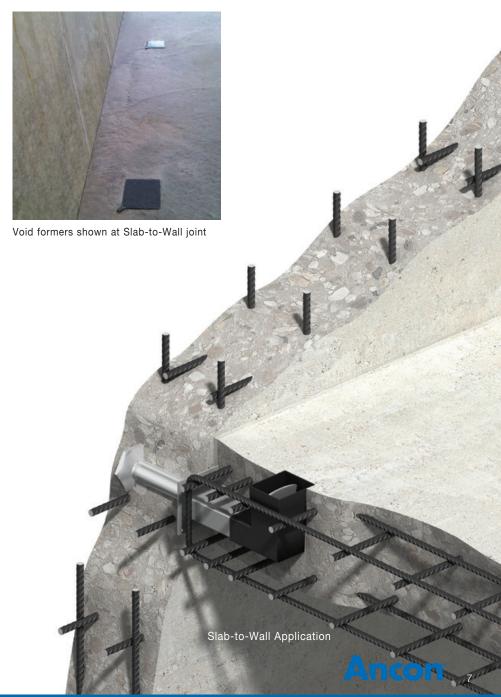
<Ancon ESDQ-L20 or Ancon HLDQ-L30> lockable shear load connector comprising dowel, sleeve and locking components to be installed at the temporary movement joint between two slabs. Product to be positioned at <insert centres>mm horizontal centres at centre line of the slab or XXXmm from the top of the slab>. The dowel is to be locked in position after <insert time period> using the locking plate and resin supplied. System should be installed in accordance with our instructions and engineer's drawings.

Slab-to-Wall Lockable Dowel ESDQ-L20W*

The dowel component is manufactured from 30mm diameter stainless steel, but is shorter than the ESDQ-L20 dowel. One end of the dowel is designed to fix into the stainless steel Ancon SKS24 Threaded Anchor cast into the face of the concrete and the other end features a series of grooves to accept the Locking Plate. The sleeve component is the same as used in the ESDQ-L20. See pages 8-11 for full technical details.

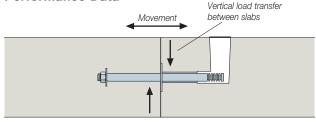
Sleeve pushed over dowel component at core wall

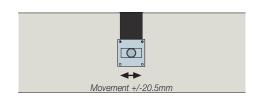

Example Specification Clause

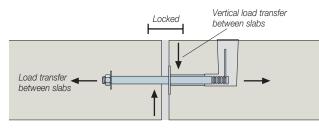

Delete/Amend blue text as appropriate

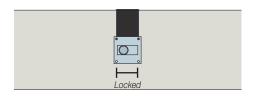
Ancon ESDQ-L20W lockable shear load connector comprising dowel, sleeve, threaded anchor and locking components to be installed at the temporary movement joint between slab and wall. Product to be positioned at <insert centres>mm horizontal centres at <the centre line of the slab or XXXmm from the top of the slab>. The dowel is to be locked in position after <insert time period> using the locking plate and resin supplied. System should be installed in accordance with our instructions and engineer's drawings.

Epoxy Resin


Each dowel is locked after a pre-determined time period (generally 90-120 days) with a high quality, two-part epoxy resin. The resin is mixed and poured into the L-shaped void former. Each dowel requires 1,500g of resin which is supplied in a single can for each dowel to control the quantity.






^{*} Patent pending

Performance Data

ESDQ-L20 Lockable Dowels (slab-to-slab)

Slab Thickness	Tension along line of dowel		Vertical Design Capacity (kN) at Various Design in 32MPa Concrete				n Joint Widths	(mm)	
(mm) 40	(kN)	5	10	15	20	25	30	35	
160	45	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
180	65	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
200	80	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
220	100	53.6	53.6	53.6	53.6	53.6	53.6	53.6	52.7
240	100	62.2	62.2	62.2	62.2	60.6	57.8	55.2	52.7
260 and above	100	71.4	69.9	66.6	63.5	60.6	57.8	55.2	

ESDQ-L20W Lockable Dowels (slab-to-wall)

Slab Thickness	Tension along line of dowel		Vertical Design Capacity (kN) at Various Design Joint W in 32MPa Concrete					s (mm)	
(mm)	(kN)	5	10	15	20	25	30	35	40
160	45	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
180	65	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
200	80	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
220	80	53.6	53.6	53.6	53.6	53.6	53.6	53.6	52.7
240	80	62.2	62.2	62.2	62.2	60.6	57.8	55.2	52.7
260 and above	80	71.4	69.9	66.6	63.5	60.6	57.8	55.2	52.7

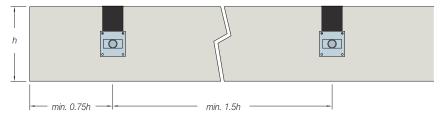
HLDQ-L30 Lockable Dowels (slab-to-slab)

Slab Thickness	Tension along line of dowel	Vertical Design Capacity (kN) at Various Design Joint Widths (mm) in 32MPa Concrete					(mm)		
(mm)	(kN)	5	10	15	20	25	30	35	40
240 and above	100	136.0	136.0	136.0	136.0	136.0	136.0	136.0	121.9

ESDQ-L20 Example

Slab thickness = 240 mmJoint width = 20mm Concrete strength = 32MPa Characteristic permanent action (dead load) = 45kN/m $\lambda_G = 1.2$ $\lambda_Q = 1.5$ Characteristic variable action (imposed load) = 50kN/mDesign load $= 1.2 \times 45 + 1.5 \times 50 = 129$ kN/m Vertical design capacity = 62.2kN (240mm slab 20mm joint) Therefore centres for vertical load = 62.2 / 129 = 0.482 m use 450mm centres

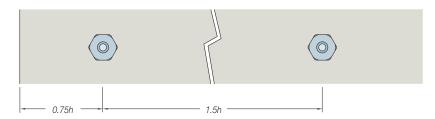
Each dowel will in addition provide a design capacity across the joint of 100kN (for slab to wall this is 80kN), therefore the total design capacity in the direction of the dowel = 100 / 0.45 = 222kN (for slab to wall 80 / 0.45 = 177kN).


If this is insufficient, the dowel centres can be reduced to a minimum of 1.5 x slab thickness to increase the design capacity across the joint, in this example it would increase to 100 / 0.36 = 277 kN (for slab to wall 80 / 0.36 = 222 kN).

Joint Filler / Fire Protection

Leviat can provide information on a suitable joint filler and also recommend fire resistant material which could be used as part of an overall fire protection system.

Edge Distance and Spacings For connectors working at or near their maximum capacity, the minimum


For connectors working at or near their maximum capacity, the minimum spacing should be 1.5 times the slab thickness. Where the design load of the connector could be used in a thinner slab, a spacing of 1.5 times the thinner slab thickness can be used. The minimum end distance is always 0.5 times the spacing.

ESDQ-L20 Minimum Edge Distance and Spacings

HLDQ-L30 Minimum Edge Distance and Spacings

ESDQ-L20W Minimum Edge Distance and Spacings. h = depth of adjoining slab

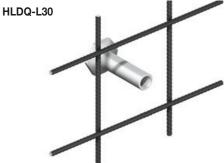
ESDQ-L20 Example	
Slab thickness	= 300mm
Joint width	= 20mm
Concrete strength	= 32MPa
Design capacity/connector	= 63.5kN
(based on slabs 260mm and above)	
Spacing for max. load	$300 \times 1.5 = 450 \text{mm}$
End distance for max. load	450 x 0.5 = 225mm
Design capacity/metre	= 63.5 / 0.45 = 141.1kN/m
As an ESDQ-L20 can be used in a 220mm slato 53.6kN, the spacing can be based on a 22	· , , , , , , , , , , , , , , , , , , ,
Reduced spacing	220 x 1.5 = 330mm
Reduced end distance	330 x 0.5 = 165mm
Design capacity/metre	53.6 / 0.33 = 162.4kN/m

Reinforcement Details

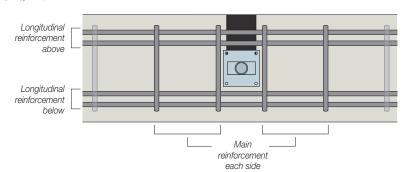
Local reinforcement is required around each Ancon Lockable Dowel to guarantee that the forces are transferred between the connectors and the concrete. Correct detailing in accordance with appropriate design codes and the recommendations provided here will ensure the dowels attain their full capacity. The tables show the main reinforcement required, together with details of reinforcement above and below the connectors. Although only the sleeve components are illustrated, the same reinforcement is required around the dowel component.

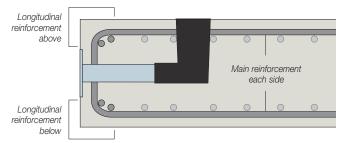
Options for Main Reinforcement

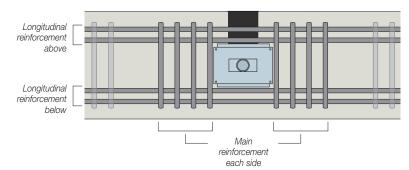
Lockable Dow	el No.	of U-bars each	side
Ref.	H12	H14	H16
ESDQ-L20	2	-	-
HLDQ-L30	4	3	3

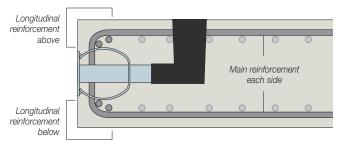

Options for Longitudinal Reinforcement

Lockable Dowel	No. of bars top and bottom					
Ref.	H12	H14	H16			
ESDQ-L20	2	-	-			
HLDQ-L30	2	2	2			

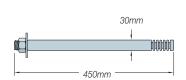

ESDQ-L20



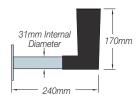

SKS24 Threaded Anchor, part of ESDQ-L20W

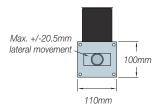

ESDQ-L20

HLDQ-L30

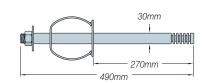

Threaded Anchor

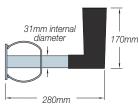
Reinforcement around the Ancon Threaded Anchor should be a minimum diameter of 12mm, installed at maximum 200mm vertical and horizontal centres.

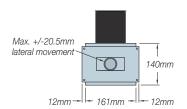


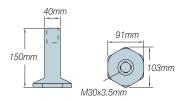

Dimensions

ESDQ-L20 Components Dowel Component

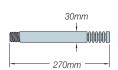

Sleeve Component

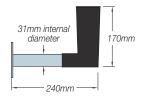


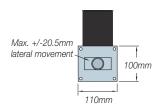

HLDQ-L30 Components
Dowel Component



Sleeve Component




ESDQ-L20W Components SKS24 Threaded Anchor



Dowel Component

Sleeve Component

Installation

Slab-to-Slab

Although installation is shown for the ESDQ-L20, the procedure is the same for the HLDQ-L30.

Nail the sleeve to the formwork either central in the slab or for slab depths over 300mm so the top of the void former is level with the top of the slab. Do not remove the label over the nailing plate as this prevents ingress of concrete into the sleeve. Fix the local reinforcement, as specified on engineer's drawings.

Pour the concrete, and when of sufficient strength, strike the formwork. Puncture the label to reveal the cylindrical sleeve only and insert the dowel until it is approximately 20mm from the back of the void former.

Fix the local reinforcement around the dowel component and pour the concrete.

After a predetermined time period (generally 90-120 days), when movement between the slabs has stabilised and the joint between the slabs has been filled, the dowel is ready to be locked.

Fit the Locking Plate on a groove in the centre of the void former. The fan-shaped Locking Plate allows the dowel to be locked in any position.

Mix the two-part epoxy resin and pour into the void former. It is essential the resin flows along the stainless steel box section towards the joint and reaches the notches on the locking plate, which indicate minimum resin depth.

Joint must be filled before resin is installed.

After 24 hours the void former can be filled with cementitious material, level with the top of the slab, to complete the installation.

The locked dowel continues to transfer vertical load between the slabs, but movement can no longer take place.

Slab-to-Wall

Nail the threaded anchor to the formwork so the dowel will be central in the adjoining slab or within 150mm of the top of slabs over 300mm. Fix the local reinforcement as specified on engineer's drawings and cast the concrete.

When concrete reaches sufficient strength, strike the formwork and remove nailing plate. Screw the dowel into the anchor.

Puncture the label of the sleeve to reveal the cylindrical sleeve only. Push the sleeve over the dowel until it is flush with the concrete. Tie sleeve to reinforcement and pour concrete.

See Steps 4 to 6 above to complete installation.

Notes: Where deep concrete pours are proposed, the installation will require further consideration. More robust fixing of the sleeve and dowel components will be necessary, to avoid displacement during casting of the concrete.

Project References

5,000 Lockable dowels were installed on the Royal Children's Hospital, Melbourne, VIC

2,500 Lockable dowels were installed on the Supreme & District Court, Brisbane, QLD

500 Lockable dowels were installed on the Emergency Care Centre in Aberdeen, UK

Other Ancon Products

DSD/Q Shear Load Connectors

Ancon DSD and DSDQ double-dowel connectors are used to transfer shear across movement joints in suspended concrete slabs. They are more effective at transferring load and allowing movement than standard single dowels and can be used to eliminate double columns at structural movement joints in buildings. The Q version features a rectangular box section to allow lateral and some rotational movement.

Plate Dowel Systems

Ancon MultiJoint is a plate dowel system for use in ground bearing concrete floor slabs. It is an all-in-one solution to load transfer, concrete contraction, armoured edge protection and formwork. Individual plate dowels are also available.

Ancon Shearfix is used within a slab to provide additional reinforcement from punching shear around columns. The system consists of double-headed steel studs welded to flat rails and is designed to suit the load conditions and slab depth at each column using our free calculation software.

Reinforcing Bar Couplers

The use of reinforcing bar couplers can provide significant advantages over lapped joints. Design and construction of the concrete can be simplified and the amount of reinforcement can be reduced. The Ancon range includes BT parallel-threaded and MBT mechanically-bolted couplers.

Reinforcement Continuity Systems

Reinforcement Continuity Systems are an increasingly popular means of maintaining continuity of reinforcement at construction joints in concrete. The Ancon Keybox system eliminates the need to drill shuttering and can simplify formwork design, thereby accelerating the construction process. It is available in both standard units and special configurations. Ancon KSN Anchors eliminate the need for on-site bar straightening and are available as standard to accept 12mm, 16mm and 20mm diameter rebar. The system is also available with a re-useable rebate former.

Stainless Steel Reinforcement

Leviat supplies stainless steel plain and ribbed bar in a variety of grades, including high proof strength material, direct from stock. Bar diameters range from 6mm to 50mm and can be cut to length, bent and threaded to suit any application. Stainless steel BT couplers are also available to suit bars from 12mm diameter.

Worldwide contacts for Leviat:

Australia

Leviat

98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770 Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria

Leviat

Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belaium

Leviat

Industrielaan 2 1740 Ternat

Tel: +32 - 2 - 582 29 45 Email: info.be@leviat.com

China

Leviat

Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic

Leviat

Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5 Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

Finland

Leviat

Vädursgatan 5 412 50 Göteborg / Sweden Tel: +358 (0)10 6338781 Email: info.fi@leviat.com

France

Leviat

6, Rue de Cabanis FR 31240 L'Union Toulouse

Tel: +33 - 5 - 34 25 54 82 Email: info.fr@leviat.com

Germany

Leviat

Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

India

Leviat

309, 3rd Floor, Orion Business Park Ghodbunder Road, Kapurbawdi, Thane West, Thane, Maharashtra 400607 Tel: +91 - 22 2589 2032 Email: info.in@leviat.com

Italy

Leviat

Via F.Ili Bronzetti 28 24124 Bergamo Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia

Leviat

28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel: +603 - 5122 4182

Tel: +603 - 5122 4182 Email: info.my@leviat.com

Netherlands

Leviat

Oostermaat 3 7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

New Zealand

Leviat

2/19 Nuttall Drive, Hillsborough, Christchurch 8022 Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway

Leviat

Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Philippines

Leviat

2933 Regus, Joy Nostalg, ADB Avenue Ortigas Center Pasig City

Tel: +63 - 2 7957 6381 Email: info.ph@leviat.com

Poland

Leviat

UI. Obornicka 287 60-691 Poznan Tel: +48 - 61 - 622 14 14 <u>Email:</u> info.pl@leviat.com

Singapore

Leviat

14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain

Levia

Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden

Leviat

Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland

Leviat

Grenzstrasse 24 3250 Lyss Tel: +41 - 31 750 3030 Email: info.ch@leviat.com

United Kingdom

Leviat

President Way, President Park, Sheffield, S4 7UR Tel: +44 - 114 275 5224 Email: info.uk@leviat.com

United States of America

Leviat

6467 S Falkenburg Rd. Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed

Email: info@leviat.com

Leviat.com

Notes regarding this catalogue

For more information on the following products, please contact:

Masonry, Structural and Precast Concrete products:

+64 (0) 3 376 5205 info.ancon.nz@leviat.com Ancon.co.nz Remedial Masonry products:

+64 (0) 3 376 5205 info.helifix.nz@leviat.com Helifix.co.nz

General Enquiries

+64 (0) 3 376 5205 Leviat.com

Sales Offices and Production

North Island:

246D James Fletcher Drive Otahuhu Auckland 2024 New Zealand

South Island:

2/19 Nuttall Drive Hillsborough Christchurch 8022 New Zealand

Leviat.com

